
ANALYSIS OF THE NONLINEAR DEFORMATION OF COMPOSITES WITH 

ALLOWANCE FOR FINITE ROTATIONS OF STRUCTURAL ELEMENTS 

B. S. Reznikov UDC 539.3 

New high-modulus non-fabric-based synthetic materials are now being developed and 
widely introduced. These composites have a fibrous-reticular structure (close to rhomboid) 
and are impregnated with a polymer binder. As micrographs have shown, the binder ends up 
mainly at the nodes network-like structure of the material. Thus, a certain volume is 
occupied by pores located a regular distance apart, As opposed to "hard" composites 
(reinforced by fibers made of glass, boron, carbon, etc.), we will refer to these materials 
as "soft" composites; they are characterized by high levels of elasticity and plasticity 
and, at sufficiently small loads, they manifest appreciably nonlinear properties. The 
possession of such properties is connected with changes in the structure of the material. 
In particular, substructural elements are rotated relative to each other by a finite 
amount. There is also a significant change in the porosity of the material. Allowance for 
these effects makes it possible to determine the transverse strains which occur under 
uniaxial loading. Thus, in constructing physical relations for these composites, we used 
the structural approach in [i]. This approach makes it possible to consider the following: 
the unit volume content of fibers and binder; porosity; the character of reinforcement of 
the composite; nonlinear properties of the substructural elements: the anisotropy of 
these properties (for the binder). 

Many authors have used mechanical models [2-5] to describe the behavior of various 
materials. For example, Rabotnov [2] and Askadskii and Matveev [4] used different 
rheological models in which the elements extended in only one direction. The study [3] 
used the rod model to examine the limiting state of hard composites reinforced in two 
directions. An analysis of the effect of the angle between structural rheological elements 
of the model was made in [4] in an investigation of the relaxation-time spectrum of 
polymers. Along with the limited scope of the inquiry [4], the approach used here 
precluded consideration of the structure of the composite and of transverse strains 
occurring during uniaxial loading. These strains are significant in the deformation of 
soft composites. 

We will use the following model to construct the equations of state of the materials 
we are examining. We will assume that the fiber composite in our study consists of repeat- 
ing rhomboid elements of thickness h in the direction of the Of axis (Fig. I). The fibers 
of the composite are misoriented by the angle 2~ and form elementary rhomboid-cells. The 
binder is located at the nodes of these cells (where binder is absent at a node, friction 
develops between the interwoven fibers). The fibers in the weave are in an equilibrium 
state, and the material is capable of retaining its shape and dimensions in the absence of 
an external load. When such a model is loaded, the elementary rhomboid-cells are deformed 
due to a change in the angle 2~ between the fibers, as well as due to deformation of the 

fibers themselves and the binder. 
The mechanical behavior of the binder at the nodes of a cell will be modeled by means 

of elements AC and BD (see Fig. i). These elements characterize the deformation of the 
binder at the nodes B, D and A, C, respectively. Here, for the sake of simplicity and 
definiteness, we assume that the elements BD and AC have a rectangular cross section of 
thickness~hx, hy and width bx, by. These quantities are determined from the conditions of 
equality of the volume of the binder at nodes A, C and B, D. 

For the composites we are examining, the type of deformation that it most interesting 
from a practical viewpoint is tension along the axes of structural symmetry. In this case, 
considering the structural features of the material (its regularity), we will assume that 
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forces are transmitted only through the nodes and that all of the elements are connected by 
hinges at these sites. 

Let stresses a be applied at cell nodes A and C (see Fig. i). The geometric parame- 
ters of the cell and the mechanical properties of its elements are such that the coordinate 
axes Ox and Oy are axes of symmetry in both the unloaded state and during deformation. 

We introduce the concept of relative unit volume content for each element of the com- 
posite. This quantity is the ratio of the volume of the material of the substructural ele- 
ment to the total volume of the material of the cell. Thus, for fibers (i.e., elements AB, 
BC, CD, and DA) 

o._~ = 4 t G b j / ' V *  ' ( i )  

for the binder in the directions Ox and Oy (i.e., the elements BD and AC) 

Q~ = 2 h ~ b J j V * ,  f2.u = 2hyby l~ /V* ,  (2) 

where V* = 4hzbz2z + 2hxbx2 x + 2h~by2y; h z = h, bz, 2 z are the thickness, width, and length of 
the reinforcing element AB (BC, CD, DA); without loss of generality, for the sake of sim- 
plicity and definiteness we assume that the fibers have a rectangular cross section; 22 x 
and 2~y are the lengths of elements BD and AC; here, in the expression for V* the first 
term corresponds to the volume of the fibers in the cell, while the second and third terms 
correspond to the volume of the binder at nodes A, C and B, D which are modeled by rods BD 
and AC. We find from Eqs. (I) and (2) that ~x + ~y + ~z = I and that the relative unit vol- 
ume content of binder ~c = ~x + ~y. 

When a unit cell is tensioned by a stress a applied at nodes A and C (see Fig. I), we 
obtain the following equations of static equilibrium: at node A 

a(hyb,j - -  2 ] h b / e o s  ~z) = 2(~Jz~b~ cos cc q- cTfl~yby; (3) 

at node B 

ofl~b:~ + 2azhzb ~ s in  cr = 0 (4) 

(a x, ay, a z are the stresses in elements BD, AC, AB (BC, CD, DA), respectively). 
Considering relations (1)-(2) and cos ~ = 2y/2 z and performing certain transformat- 

ions, we find the following equilibrium equations from (3) and (4): 

o( i  - -  ~x) = qz~('): c ~  @ OyQy, (7xQ~ @ o:Qz sin20~ = O. <5) 

We use a x and s to denote the strains of the cell in the Ox and Oy directions. These 
strains coincide with the strains of elements BD and AC (by vLrtue of the strain compati 
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bility conditions for all elements entering into the nodes A, B, C, D). The strain in the 
fibers, i.e., in elements AB, BC, CD, and DA will be designated through ~z. As usual, 
these strains are determined in the following manner: 

e~ = (l~ - -  l~,o ) / t~,o,  ey = (ty - -  ly ,o)/ ty ,o,  

e~ = (lz - -  t.,o)/l~,o. 
(6)  

Here and below, all quantities with the subscript 0 correspond to the initial state before 
loading, while those without this subscript represent running values during deformation. 

We obtain the strain compatibility conditions for all elements of the composite if we 

examine the triangle AOB (see Fig. i): 

t ~ = t ~ + l ~  a n d t g ~ = l ~ / t , ~  V O W 0 ,  

or, taking (6) into account, we obtain 

(1 @ e~) 2 = (1 @ ex) ~- sin 2 s0 ~- (1 ~- e J -  cos" c%, 

(1 + e y )  tgcc = (I @ e , . ) t g %  V a ~ O .  
(7) 

In order to close system (5), (7), we need to formulate the equations of state for 
each element of the cell. For nonlinearly elastic behavior by the elements of the compos- 

ite, we have 

~ .  = B ~  18~ I ~'~-~, ~.~ = B~e~[ ~ I "~-~, ~ = B ~  I ~1~'-~,  (8) 

where B x, By, Bz, nx, ny, n z are the empirical constants of the materials of the binder and 
fibers. The case n x = ny = n z = 1 corresponds to Hooke's law: if B x ~ By or n x ~ my, then we 
can consider the difference in the properties of the binder during deformation in the 
directions Ox and Oy. It should be noted that, instead of (8), we can use other equations 
of state for the elements of the composite. For example, we can use relations from linear 

viscoelasticity [2]. 
Thus, system (5), (7), (8) completely describes the mechanical behavior of the com- 

posite during uniaxial loading. The proposed mathematical model of the composite considers 
its structure and the difference in the mechanical properties of the binder and fibers, and 
it determines transverse strain as well as deformation in the direction of the external 
force. The equations obtained here also make it possible to determine the change in the 
structure of the composite during loading. For example, the second relation of (7) can be 
used to determine the change in the angle of reinforcement ~ during deformation. 

Let us introduce the concept of the porosity of the material ~ as the ratio of the 

volume of the pores V to the volume of the entire unit cell Ve: 
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= V / V e  = i - -  g * / V e .  (9) 

Here, V e = 22x2yh + 22zbzh. In this case, the first term in the expression for V e corre- 
sponds to the volume of rhomboid-cell ABCD (see Fig. i), while the second term corresponds 
to that part of the volume of elements AB, BC, CD, and DA that extends beyond the boundary 

of the rhomboid ABCD. 
For the sake of simplicity and determinateness, we will examine the case when the 

materials of the binder and fibers are incompressible, the thicknesses of all elements of 
the cell are the same (h x = h~ = h), and the transverse strain in the direction of the O[ 
axis of the cell can be ignored compared to ax, ay. Then after some simple transformations 

we find from (9) that 

= i - -  9o/[ (1  + e J ( l  + e~) + 0 , 5 9 o ~ ]  

(-% = vy(2Z ,o<oho)). 
(I0) 

Equation (I0) makes it possible to study the change in porosity during deformation. 
It is impossible to find a formula that explicitly expresses the dependence of the 

strains ax, s on the acting stress o from Eqs. (5), (7), and (8) (excluding Ox, ay, Oz, az, 
~), since Eqs. (5) and (7) are nonlinear, regardless of the physical relations for the ele- 

ments of the composite. Thus, we will devise an algorithm for numerical computation which 
employs the method of "sequential loadings." This allows us to have a linear system of 
equations in increments of the unkno~cns for each load step. 

We assume that the running vlaue of the acting stresses o k can be represented in the 
form 

ok =: (rh-i + A ~  Vk = t ,  2 . . . . .  % = 0 (ll) 

and that the stresses and strains in the elements of the composite are as follows: 

Vk = 1, 2 . . . . .  %,0 = e~,o = 0. 

We h a v e  s i m i l a r  r e l a t i o n s  f o r  ay,k,  az,k, ay,k , az,k, i f  we r e p l a c e  t h e  s u b s c r i p t  x i n  (12)  by 
y a n d  z ,  r e s p e c t i v e l y .  We w i l l  h e n c e f o r t h  w r i t e  o u t  o n l y  t h e  r e l a t i o n s  w i t h  t h e  s u b s c r i p t  
x f o r  s u c h  e a s e s ,  i n d i c a t i n g  i n  p a r e n t h e s e s  t h a t  t h e y  a r e  a l s o  v a l i d  when x i s  r e p l a c e d  by  
y a n d  z .  A l s o ,  f o r  t h e  a n g l e  o f  r e i n f o r c e m e n t  a we o b t a i n  

ak : ~h- ,  q- Ak~ Vk = 1, 2 . . . .  (13) 

with a change in the acting stress on AkO. 
Inserting (11)-(13) into Eqs. (5), (7) and ignoring quantities of second-order small- 

ness relative to the increments of the above-indicated quantities, we find that 

40x'h--lAhcz I ~' 
(t  - -  9--J Ah(r = 9- ,Ah%-- (-)-x Ahox ~ / c t g ' ~ h _ l ,  

-Q~Aho.~ + .Q~ (Ate% sin 2 cth_ 1 -J- %,h__lAhor sin 2ah_l) == 0; 
(14) 

)Vz,h-lAhgz -- JLx,k-lAhgx sin2 ~0 -~- ~,y,~-lAh% cos2 ao~ 

Aha(~U,h_ 1 ~- t,x,h_ 1 tg % tg eh-1) -r  Ah%tg a~_ i - -  

-- Ake..~ tg ao : O, 
(15) 

where lx,k-1 = i + Ex,k-I (X + y, z). 

We obtain a closed system of equations relative to AkOx, Aka x (x ~ y, z) and Aka if we 
augment Eqs. (14)-(15) by physical relations for the elements of the composite written in 
increments. With nontrivial nx, ny, nz, we find from (8) that 

a t  1~: : i Al(Sx = Bxl Jigxl AlEx ( X - - ~ ,  Z); (16) 
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a t  k = 2, 3 . . . .  hkzx = B~,kAhe~ ( x - +  g, z) 

(17) 

In the case n x = n~ = n~ = I, Eqs. (17) are valid u = I, 2, 3 .... 
Thus, given Aka, we can readily use system (14)-(17) Vk = i, 2 .... to determine Akax, 

Ake x (x ~ y, z), and Aka. Here, for k = i we generally find nonlinear system (14)-(16). 
This system is not difficult to solve if A1a x is assigned in the first step and AI~ is de- 
termined. With k = 2, 3 ..... algebraic system (14), (15), (17) will be linear relative to 

the unknown increments Akax, Aka x (x ~ y, z), and Aka. This system can be solved by any one 
of a number of well-known methods. 

In the numerical calculation, it is necessary to choose Aka on the basis of the 
condition 

max {JAh~x], ]Ake~] ( x - + y ,  z), l A n a i / n } <  6. (18)  

H e r e ,  0 < 6 << 1 a n d  i s  d e t e r m i n e d  b y  t h e  c o n d i t i o n  t h a t  q u a n t i t i e s  o f  s e c o n d - o r d e r  s m a l l -  
n e s s  r e l a t i v e  t o  t h e  i n c r e m e n t s  b e i n g  e x a m i n e d  c a n  be  i g n o r e d .  T h u s ,  i n  t h e  g e n e r a l  c a s e ,  
a t  e a c h  l o a d i n g  s t e p  i t  i s  n e c e s s a r y  t o  c o r r e c t  Aka i n  a c c o r d a n c e  w i t h  ( 1 8 ) .  H e r e ,  we i n -  
c r e a s e  t h e  p a r a m e t e r  k u n t i l  o k r e a c h e s  t h e  r e q u i r e d  v a l u e  o f  a .  

F i g u r e s  2 a n d  3 show r e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n s  p e r f o r m e d  w i t h  t h e  p a r a m e t e r s  
6 = 0 . 0 1 ,  n z = 1, a 0 = ~ / 3 ,  ~0 = 0 . 2 ,  ~x = ~y = 0 . 1 ,  Bz/By = 20 a n d  

l) nx = ny = 2, B x / B  u = l ;  2) n~ = n~ = 1, B x / B  u = 1; (19)  

3) nx = nu = t ,  B x / B y  = 3 �9 

The s o l i d  c u r v e s  c o r r e s p o n d  t o  t h e  d e p e n d e n c e s  o f  t h e  l o n g i t u d i n a l  s a n d  t r a n s v e r s e  l s I 
s t r a i n s  on  t h e  a c t i n g  s t r e s s  a /By .  The d a s h e d  c u r v e s  i n  F i g .  2 c o r r e s p o n d  t o  t h e  d e p e n -  
d e n c e  of the angle of reinforcement a on O/By, and Fig. 3 characterizes the change in 
porosity w in relation to a/By. The numbers next to the curves represent the variant of 
the parameter from (19). 

The results obtained here show that the proposed model of a composite material makes 
it possible to consider the nonlinear character of the a - s and o - s curves (even in the 
case of elastic deformation of the substructural elements - solid lines 2 and 3 in Figs. 2 
and 3), determine the changes in the structure of the material (angle of reinforcement and 
porosity) during loading, and determine the transverse strains during uniaxial loading 
(here, as shown by the calculations, the ratio of the transverse strain to the longitudinal 
strain for the given materials depends on the acting stress). 
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